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Source estimation by full wave form inversion

Björn Sjögreen∗ and N. Anders Petersson∗

August 15, 2012

Abstract

We consider the inverse problem of estimating the parameters describing a seismic
source, based on time-dependent ground motion recordings at a number of receiver
stations. The source is modeled as a point moment tensor forcing, characterized
by its location, moment tensor components, start time, and frequency parameter in
the time function. In total, there are 11 unknown parameters. We use a non-linear
conjugate gradient algorithm to minimize the full waveform misfit between observed
and computed ground motions at the receiver stations.

An important underlying assumption of the minimization problem is that seismic
wave propagation can be accurately modeled by the elastic wave equation in a hetero-
geneous isotropic material. We use a fourth order accurate finite difference method
to evolve the seismic waves in time. The discretization satisfies a summation by parts
property that guarantees stability of the explicit time-stepping scheme. The adjoint
of the discretized elastic wave equation is used to compute the gradient of the misfit,
which is needed by the non-linear conjugated gradient minimization algorithm.

A new moment tensor source discretization is derived that is twice continuously
differentiable with respect to the source location. It guarantees that the Hessian
of the misfit is a continuous function of the source parameters. We show how the
Hessian can be calculated by solving 11 elastic wave equations and one adjoint wave
equation. Because Hessian of the unscaled problem has a very large condition number,
a preconditioner must be used to scale the parameters in the non-linear conjugated
gradient algorithm. Compared to several other scaling approaches, we find that the
diagonal of the Hessian provides the most reliable alternative. Numerical experiments
are presented for estimating the source parameters from synthetic data in a layer
over half-space problem (LOH.1), demonstrating good convergence properties of the
proposed approach.

1 Introduction

This article presents a computational technique for estimating the parameters specifying
the source in a seismic event, such as an earthquake, a mine implosion, or an explosion.

∗Center for Applied Scientific Computing, L-422, LLNL, P.O. Box 808, Livermore, CA 94551, USA.
This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344. This is contribution LLNL-JRNL-573912.
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Our approach uses a preconditioned non-linear conjugated gradient technique to match a
number of time-dependent seismographic ground motion observations, which are measured
at fixed receiver locations.

We consider seismic source estimation as a minimization problem constrained by the
elastic wave equation subject to appropriate boundary and initial conditions. Our ob-
jective of the source estimation is to minimize the difference between the recorded and
simulated wave forms. We assume that ground motion observations are recorded at the
fixed spatial locations xr, r = 1, . . . , R, and that three orthogonal components of the dis-
placement are measured as functions of time at all recording stations, denoted by dr(t). Let
u(x, t) be the displacement field governed by the elastic wave equation. The displacement
field depends implicitly on the source parameters, which we collect in the P -dimensional
real-valued vector p. The continuous minimization problem is defined through the misfit
functional

Xc(p) =
1

2

R
∑

r=1

∫ T

t=0
s(t) |u(xr, t)− dr(t)|2 dt, (1)

where s(t) > 0 is a weight function and |w| denotes the magnitude of the vector w ∈ #3.
Note that the misfit is a non-negative real scalar functional of u, which accounts for
differences between the time-dependent wave forms u(xr, t) and dr(t) in the time interval
0 ≤ t ≤ T . Hence, Xc = 0 implies perfect agreement between the wave forms at all
recording stations, i.e., u(xr, t) = dr(t) for 0 ≤ t ≤ T and r = 1, 2, . . . , R.

We minimize the full waveform misfit functional (1) by using a gradient based op-
timization algorithm, where the gradient is efficiently computed by solving the adjoint
problem. Full waveform inversion, i.e., inversion by minimizing the functional (1), is a
technique that has gained popularity for seismic problems in recent years. For a recent
example see [7], where both the material inversion and the source inversion problems are
addressed. In that paper the elastic wave equation is solved by a spectral element method.
The adjoint problem is formulated for the PDE and is discretized by the spectral element
method. The minimization is done by a non-linear conjugate gradient method. Two dif-
ferent source models are used, one with seven parameters (six momentum components and
depth) and one with nine parameters (six momentum components and location). Tromp
et al. [19] discuss the seismic inversion problem for a number of different misfit functionals.
They solve the source inversion problem in two space dimensions for a source with two
parameters, by minimizing the travel time misfit functional. A similar approach is given
in [17], where a source in two space dimensions is parametrized by its location and the
source origin time. The source inversion problem is solved by minimizing the travel time
misfit functional with respect to the three source parameters.

If only the location of the source is needed, a time-reversal method can be used instead
of the full wave form inversion. In time-reversal, the elastic wave equation is solved
backwards in time, using the observed data at the receivers as sources. If the entire
displacement field were know at some time T , it would be possible to use this field as
’initial data’ and solve the equation backwards from T , since the elastic wave equation is
time reversible. The waves would then converge to the source location, which could be
inferred. Often, the observed time history data at the receiver points is enough to recreate
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the backward in time waves with good precision. This technique has been extensively used
in acoustics, see [5]. An application of time-reversal to locate seismic sources is given in
[9].

Source estimation by minimizing the full waveform misfit (1) can give unreliable results
when the actual material properties (i.e. the earth) are poorly represented by the material
model. To compensate for an imperfect material model, it is often necessary to introduce
windowing functions into the misfit functional, to only select certain parts of the measured
seismograms, see [7]. Windowing can be done through the function s(t) in (1), where it is
also possible to have different windows at different receivers. Another issue is that there is
always some uncertainty in measured data. It can therefore be beneficial to consider both
measured data and source parameters as probability distributions. A general description
of the probabilistic approach is given [18]. See [3] for an application of these ideas to
uncertainty quantification of seismic source inversion.

There is a large number of optimization methods available to perform the minimization
of the misfit functional. Direct search methods, i.e., minimization algorithms that do not
use the gradient information have been used to solve the inverse problem in seismology,
e.g., the downhill simplex method was used in [10]. See [8] for a review of direct search
minimization algorithms. In the same spirit are methods that use source-receiver reci-
procity to efficiently compute the misfit functional for a large number of different source
locations, see [4]. Although these methods are very robust, they tend to require a large
amount of computational work as the number of undetermined parameters grows.

Optimization methods that make use of both the gradient and the Hessian (or an
approximate Hessian), such as Newton and quasi-Newton methods have been successfully
used for inverse problems, see, e.g., [6] for electromagnetic scattering and [15] for resistivity
imaging in oil exploration. These methods are made efficient by approximating the Hessian
by the positive definite secant update (BFGS), see [2] for a description of secant update
quasi-Newton methods. For the source inversion problem in the current study, we have
found that with good preconditioning, the non-linear conjugated gradient method is a very
efficient alternative to quasi-Newton techniques.

In the following we assume that the displacement field u(x, t) satisfies the elastic wave
equation in the three-dimensional domain Ω, subject to initial and boundary conditions.
Here, the boundary is denoted Γ = Γ1 ∪ Γ2. The displacement is governed by

ρutt = ∇ · τ (u) + f(x, t;p), x ∈ Ω, 0 ≤ t ≤ T,

u(x, 0) = 0, x ∈ Ω, t = 0,

ut(x, 0) = 0, x ∈ Ω, t = 0,

n · τ (u) = 0, x ∈ Γ1, 0 ≤ t ≤ T,

u = 0, x ∈ Γ2, 0 ≤ t ≤ T,

(2)

where ρ(x) is the density. We further assume that the earth can be described as a heteroge-
neous isotropic elastic material. The stress tensor τ (u) is then related to the displacement
gradient through

τ (u) = λ div(u) I + µ (∇u+∇uT ), (3)

where λ(x) and µ(x) are the first and second Lamé parameters of the material.
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The function f in (2) describes the seismic source. For smaller seismic events, it can
be modeled by a point moment tensor source,

f(x, t;p) = g(t)M∇δ(x− xs). (4)

Here, ∇δ(x) is the gradient of the Dirac distribution. The source time function g(t) =
g(t; t0,ω0) is assumed to depend on two parameters; a time shift t0 and a frequency
parameter ω0. The source is located at xs = (xs, ys, zs) and the elements of the symmetric
matrix M are denoted

M =









mxx mxy mxz

mxy myy myz

mxz myz mzz









.

Under these assumptions the forcing function f depends on P = 11 parameters,

p = (xs, ys, zs, mxx, mxy, mxz, myy, myz, mzz, t0, ω0). (5)

The continuous source estimation problem can be stated as the constrained minimiza-
tion problem

minXc(p), u satisfies (2) with forcing f(x, t;p).

Unfortunately, the elastic wave equation can not be solved analytically except in highly
idealized situations, such as when the free surface boundary is flat and the material has
homogeneous properties. For this reason, we discretize the elastic wave equation by a
fourth order accurate finite difference method and solve it numerically. This allows us
to account for general heterogeneous material properties and also make our approach
extendable to realistic topographies.

The remainder of this article is organized in the following way. Section 2 gives an
overview of our fourth order accurate finite difference discretization, defines the discrete
source estimation problem, derives the adjoint of the discretized elastic wave equation, and
proves the adjoint property. This property gives a relation between the solutions of the
elastic and adjoint wave equations and their forcing functions, which is used in Section 3
to derive an efficient approach for computing the gradient and Hessian of the discrete
misfit. Section 4 develops a new spatial discretization of the singular source function
(4). This source discretization is designed to be compatible with a fourth order accurate
difference scheme, and to be twice continuously differentiable with respect to the source
location. Section 5 describes how ray tracing, combined with the linearity of the elastic
wave equation, can be used to estimate an initial guess for the source parameters. In Sec-
tion 6, we perform numerical experiments with the complete source inversion algorithm on
a synthetic problem. We investigate how different scaling strategies affect the convergence
rate of the minimization algorithm, and demonstrate that a scaling based on the Hessian
makes the non-linear conjugate gradient method converge rapidly. Conclusions are given
in Section 7.
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2 The discretized problem

2.1 A self-adjoint fourth order accurate finite difference scheme

Consider the elastic wave equation (2) on the box shaped domain (x, y, z) ∈ [0, xmax] ×
[0, ymax]× [0, zmax], and the time interval 0 ≤ t ≤ T . Let the computational grid be

xi = (i− 1)h, yj = (j − 1)h, and zk = (k − 1)h,

where h > 0 is the grid size and i, j, and k are integers in the ranges i ∈ [0, Nx + 1],
j ∈ [0, Ny + 1], and k ∈ [0, Nz + 1]. The domain sizes are chosen such that xNx = xmax,
yNy = ymax, and zNz = zmax. The points with i = 0, i = Nx+1, j = 0, j = Ny +1, k = 0,
or k = Nz + 1 are ghost points, which are used to impose boundary conditions. Time is
discretized on the grid tn = n∆t, where ∆t > 0 is the fixed time step and n is an integer.
The time step is chosen to satisfy the CFL stability condition, and tM = M∆t = T where
M > 0 is the total number of time steps.

The numerical approximation of the displacement vector u(x, t) at grid point (i, j, k)
and time level tn is denoted by un

i,j,k = (uni,j,k, v
n
i,j,k, w

n
i,j,k). To improve readability, we

occasionally suppress the subscript or superscript on u, for example by writing un for
un
i,j,k. When convenient we also use the vector index notation i = (i, j, k) to indicate a

spatial grid point index.
In [16], we developed a fourth order accurate symmetric discretization of the divergence

of the stress tensor (3). This operator, denoted by Lh(u), has the property that

(v,Lh(u))h = (Lh(v),u)h, (6)

for any two grid functions u and v that satisfy the discretized boundary conditions

B(u)i,j,k = 0, xi,j,k ∈ Γ. (7)

The scalar product in (6) is defined by

(v,u)h = h3
Nz
∑

k=1

Ny
∑

j=1

Nx
∑

i=1

ai,j,k〈vi,j,k,ui,j,k〉, (8)

where ai,j,k are positive weights determined from the summation by parts property of
Lh(u) that is needed to enforce (6). Also, 〈u,v〉 =

∑3
q=1 u

(q)v(q), is the inner product
between real-valued vectors with three components. Using this notation, the magnitude
of u satisfies |u|2 = 〈u,u〉.

We consider boundary operators B that either discretize free surface or Dirichlet
boundary conditions,

B(un)i,j,k =

{

B(un)i,j,kni,j,k, Free surface,

un
i,j,k, Dirichlet.

Here, B(u) is a special difference approximation of the stress tensor on the boundary that
matches Lh(u)i,j,k such that (6) is satsified, which makes the overall discretization stable.
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The vector ni,j,k is the outward boundary normal. A detailed description of the interior
and boundary discretizations can be found in [12, 16].

We discretize the elastic wave equation (2) using the fourth order accurate differ-
ence method described in [16]. This method computes the displacement field un, n =
1, 2, . . . ,M , as is outlined in Algorithm 1. Note that the grid function F(t;p) in this algo-
rithm represents a discretization of the singular source term f(x, t;p). This discretization
will be described in detail in Section 4. The operator SG(u) is a damping operator, used

Algorithm 1 4th order accurate predictor-corrector scheme for the elastic wave equation.

1: procedure Forward(u,F)
2: Initial conditions: u0 = 0 and u−1 = 0

3: for n = 0, 1, . . . ,M − 1 do

4: Predictor step:

u∗ = 2un − un−1 +
∆2

t

ρ

(

Lh(u
n) + F(tn;p)

)

5: Impose boundary condition (7) on u∗ to define its ghost point values
6: Acceleration: vn =

(

u∗ − 2un + un−1
)

/∆2
t

7: Corrector step:

un+1 = u∗ +
∆4

t

12ρ

(

Lh(v
n) + Ftt(tn;p)

)

+ SG(u
n − un−1)

8: Impose boundary condition (7) on un+1 to define its ghost point values
9: end for

10: end procedure

in a supergrid sponge layer near artificial far-field boundaries. SG(u) is consistent with

−γh4∆t

(

(σ(x)(x)uxxt)xx + (σ(y)(y)uyyt)yy + (σ(z)(z)uzzt)zz
)

,

where γ is a constant that controls the strength of damping. The scalar, non-negative,
taper functions σ(x),σ(y), and σ(z) are non-zero only in the sponge layers, where they
increase from 0 to 1 in the outward direction through the layer. The domain is terminated
at the artificial boundary by a homogeneous Dirichlet boundary condition, enforced on
the approximation such that the symmetry property

(v,SG(u))h = (SG(v),u)h (9)

holds, and such that the discrete energy of the solution becomes non-negative and non-
increasing. Note that the material properties (ρ, λ, and µ) are smoothly modified in the
supergrid layer, such that the compressional and shear wave speeds become very small
near the outer boundaries of the layer. The purpose of this modification is to slow down
all waves that enter the layer to make the damping operator more efficient. More details
on the supergrid technique, its discretization, and the proof of (9), will be given in [14].
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2.2 The discrete source estimation problem

A straight forward generalization of the continuous formula (1) leads to the discrete misfit
functional

X (p) =
1

2

R
∑

r=1

M−1
∑

n=0

s(tn)|un
ir − dr(tn)|2. (10)

As in the continuous problem, s(tn) > 0 is a weight function. We assume that all recording
stations coincide with grid points, i.e., xr = xir for some vector index ir = (ir, jr, kr).
Furthermore, the observed displacements dr(t) are assumed to have already been filtered
in time such that they only contain motions that can be captured on the computational
grid.

Similar to the continuous case, the displacement at the recording stations depends
implicitly on the parameter vector p in the discretized forcing function F. Given the
source parameters p, we can use Algorithm 1 to calculate the solution of the elastic wave
equation, which then can be inserted into (10) to evaluate the discrete misfit X (p). Hence,
the discrete source estimation problem can be stated as the constrained minimization
problem,

minX (p), un is calculated by Algorithm 1 with forcing F(tn;p).

2.3 The adjoint wave equation

An efficient approach for computing the gradient of the misfit uses the adjoint wave field,
κn
i . Let the source term in the adjoint equation be G(tn). The adjoint wave field satisfies

the adjoint of the discretized elastic wave equation. A method for calculating κ is given
in Algorithm 2.

Algorithm 2 The adjoint of the 4th order scheme for the elastic wave equation.

1: procedure Adjoint(κ,G)
2: Terminal conditions: κM−1 = 0 and κM = 0

3: for n = M − 1,M − 2, . . . , 1 do

4: Predictor step:

κ∗ = 2κn − κn+1 +∆2
t
Lh(κn)

ρ
(11)

5: Impose boundary condition (7) on κ∗ to define its ghost point values
6: Compute acceleration: ζn =

(

κ∗ − 2κn + κn+1
)

/∆2
t

7: Corrector step:

κn−1 = κ∗ +
∆4

t

12

Lh(ζ
n)

ρ
+

∆2
t

ρ
G(tn)− SG(κ

n+1 − κn), (12)

8: Impose boundary condition (7) on κn−1 to define its ghost point values
9: end for

10: end procedure
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The adjoint property is made precise in the following theorem.

Theorem 1. Let F (with second time derivative Ftt) be the source term in the discretized
elastic wave equation, and use Algorithm 1 to calculate u. Furthermore, let G be the source
term in the adjoint wave equation and use Algorithm 2 to calculate κ (with acceleration
ζ). Then the grid functions u and κ are adjoint in the sense that

M−1
∑

n=0

(Gn,un)h =
M−1
∑

n=0

(

κn,Fn +
∆2

t

12
Fn
tt

)

h

+
∆2

t

12

M−1
∑

n=0

(ζn,Fn)h . (13)

Proof: See Appendix A.

3 Minimizing the misfit

We use a preconditioned Fletcher-Reeves algorithm to minimize the discrete misfit. This
technique generalizes the conjugate gradient method to non-quadratic problems, see for
example [11]. The preconditioning corresponds to a change of variables, p̂ = Sp, where S
is a non-singular matrix. The change of variables is introduced to improve the convergence
properties of the Fletcher-Reeves algorithm. We first formulate the minimization algorithm
in the scaled variables, and then transform it back to the original variables. The resulting
algorithm with m restarts, and where the parameter vector p has P components is given
in Algorithm 3. The algorithm terminates after all restarts have been completed, or when
the maximum norm of the scaled gradient is smaller than the tolerance θ, 0 < θ * 1.
In practice we usually set θ = 10−12. Note that the algorithm is given for a general
preconditioning matrix S. When S is diagonal, STS = S2. The Fletcher-Reeves algorithm
uses the gradient of the misfit with respect to the components of the parameter vector p.
It is defined by

∇X (p) =

(

∂X
∂p1

,
∂X
∂p2

, . . . ,
∂X
∂pP

)T

.

In Section 3.1, we discuss an efficient approach for calculating all components of the
gradient by solving one adjoint wave equation.

The convergence properties of the Fletcher-Reeves algorithm depend on the properties
of the scaled Hessian matrix, with elements Ĥi,j = ∂2X/∂p̂i∂p̂j . In matrix notation, we
have

Ĥ = S−THS−1, Hi,j =
∂2X
∂pi∂pj

,

where H is the unscaled Hessian. Here, S−T denotes the transpose of the matrix S−1. The
conjugated gradient algorithm is not guaranteed to converge unless the Hessian matrix is a
continuous function of all parameters, i.e., the misfit function must be twice continuously
differentiable with respect to p. It is straightforward to see that the displacement field
depends linearly on the matrix elements of M. Hence u and thereby X are infinitely
differentiable with respect to the elements of M. We assume that the time function
depends on t0 through a time shift g(t; t0,ω0) = g̃(t − t0;ω0). Because the source term
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Algorithm 3 The preconditioned Fletcher-Reeves algorithm. Here, ∇Xk = ∇X (pk).

1: procedure Precond-Fletcher-Reeves(p0)
2: for r = 1, 2, . . . ,m do

3: Initial search direction: q0 = −(STS)−1∇X (p0)
4: for k = 0, 1, . . . , P − 1 do

5: Line search: find steplength αk that minimizes X (pk + αkqk)
6: Next parameter vector: pk+1 = pk + αkqk

7: Compute βk:

βk =
∇X T

k+1(S
TS)−1∇Xk+1

∇X T
k (STS)−1∇Xk

8: Next search direction: qk+1 = −(STS)−1∇X (pk+1) + βkqk

9: if ||S−1∇Xk+1||∞ < θ then

10: p0 = pk+1

11: return
12: end if

13: end for

14: Initial guess for next outer iteration p0 = pP

15: end for

16: end procedure

F enters into the finite difference scheme with two time derivatives (see Algorithm 1), a
requirement for the Hessian to be defined is that g̃(t;ω0) is four times differentiable with
respect to t and twice differentiable with respect to ω0. In this article, g̃ is assumed to
have this regularity. The spatial discretization and regularity of the moment tensor source
with respect to its location, xs, are discussed in Section 4.

A crucial component of the preconditioned Fletcher-Reeves algorithm is the line search
algorithm, i.e., to minimize X (pk + αqk) with respect to the step length α. In our imple-
mentation, we use the backtracking algorithm A6.3.1 in [2], with the minor modification
that the full step is pk + αsqk, instead of pk + qk, as assumed in [2]. The full step size
αs is taken from the linear conjugated gradient algorithm, which assumes that X (p) is a
quadratic function of p,

αs = −
∇X T

k qk

qT
kHkqk

. (14)

In our case, the Hessian is evaluated at pk, i.e., Hk = H(pk). In Section 3.2, we present
an algorithm for evaluating qT

kHkqk that only requires one additional wave equation to be
solved. In most iterations of the Fletcher-Reeves algorithm, the full step length αs yields
an acceptable approximation of the minimum in the line search. Hence, the backtracking is
rarely invoked. The “typical x” vector, needed in backtracking algorithm A6.3.1 (see [2]),
is taken as the inverse of the diagonal elements of the scaling matrix S.
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3.1 The gradient of the misfit

Straightforward differentiation of (10) gives

∂X
∂pj

=
R
∑

r=1

M−1
∑

n=0

s(tn)

〈

un
ir − dr(tn),

∂un
ir

∂pj

〉

. (15)

Note that the material properties ρ, µ, and λ do not depend on pj . By differentiating
the difference scheme for u with respect to pj , we see that ∂u/∂pj could be calculated
with the same finite difference scheme as used for computing u, if the source term F were
replaced by ∂F/∂pj . However, to compute the gradient of X with this technique, it would
be necessary to solve the elastic wave equation with 11 different forcing functions, where
each forcing corresponds to one component of ∂X/∂pj .

A more efficient way of computing the gradient of the misfit is based on solving the
adjoint wave equation. In this approach, we define the adjoint source in (12) as

Gn
i =

R
∑

r=1

s(tn)
(

un
ir − dr(tn)

) δi,ir
h3ai

, (16)

where ai is the weight coefficient in the scalar product (8) and

δi,j =

{

1, i = j,

0, otherwise.

Inserting (16) into (15) shows that the gradient of the misfit can be written

∂X
∂pj

=
M−1
∑

n=0

(

Gn,
∂un

∂pj

)

h

.

Because ∂u/∂pj satisfies the forward finite difference scheme with source term ∂F/∂pj ,
we can apply Theorem 1 to obtain

∂X
∂pj

=
M−1
∑

n=0

(

κn,
∂Fn

∂pj
+

∆2
t

12

∂Fn
tt

∂pj

)

h

+
∆2

t

12

M−1
∑

n=0

(

ζn,
∂Fn

∂pj

)

h

. (17)

Equation (17) allows us to calculate all components of the gradient from the adjoint wave
field κn

i . The scalar products involving the gradients of F can be assembled during the
time stepping of the adjoint scheme. Because the forcing function F only is non-zero at
a few grid points near xs, the computational cost of evaluating these scalar products is
insignificant compared to solving the adjoint wave equation.

3.2 Calculating the Hessian and qTHq

The Hessian matrix plays an important role in gradient based optimization. For example,
the condition number of the Hessian governs the convergence rate of the conjugate gradient
algorithm, and the Hessian can be used to construct a preconditioner.
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To compute the Hessian, we differentiate (15) with respect to pk to obtain

Hk,j :=
∂

∂pk

(

∂X
∂pj

)

=
R
∑

r=1

M−1
∑

n=0

s(tn)
∂

∂pk

〈

un
ir − dr(tn),

∂un
ir

∂pj

〉

=
R
∑

r=1

M−1
∑

n=0

s(tn)

〈

∂un
ir

∂pk
,
∂un

ir

∂pj

〉

+
R
∑

r=1

M−1
∑

n=0

s(tn)

〈

un
ir − dr(tn),

∂2un
ir

∂pk∂pj

〉

. (18)

We decompose the Hessian into two parts, H = H(1) +H(2), where

H(1)
j,k :=

R
∑

r=1

M−1
∑

n=0

s(tn)

〈

∂un
ir

∂pk
,
∂un

ir

∂pj

〉

, (19)

H(2)
j,k :=

R
∑

r=1

M−1
∑

n=0

s(tn)

〈

un
ir − dr(tn),

∂2un
ir

∂pk∂pj

〉

. (20)

By noting the similarities between (15) and (20), we see that the matrix H(2) can also be
computed using the adjoint wave field κ. We arrive at the formula

H(2)
j,k =

M−1
∑

n=0

(

κn,
∂2Fn

∂pk∂pj
+

∆2
t

12

∂2Fn
tt

∂pk∂pj

)

h

+
∆2

t

12

M−1
∑

n=0

(

ζn,
∂2Fn

∂pk∂pj

)

h

. (21)

Note that this formula is similar to (17), except that the first derivative of the forcing
has been replaced by its second derivative. Hence, we can obtain H(2) by accumulating
additional scalar products during the time stepping of the adjoint wave equation. There-
fore, the computation of H(2) does not require any additional elastic wave equations to
be solved. However, calculating H(1) requires the quantities ∂un

i /∂pj to be known, which
satisfy the elastic wave equation with the forcing term ∂F/∂pj . Hence, an additional 11
elastic wave equations must be solved to assemble the matrix H(1).

The higher computational cost of calculating the Hessian makes it prohibitively ex-
pensive to evaluate in each iteration of Algorithm 3. However, as we will see below, it is
highly advantageous to compute the Hessian at least once, and use it as a preconditioner
throughout the iteration.

The step length calculation (14) for αs requires the computation of the scalar quantity
qTHq, where q is a vector with P = 11 components. As before, we decompose the Hessian
into H = H(1)+H(2). The second term, qTH(2)q, is directly available after H(2) has been
calculated, as described above. For the first term, we note that

qTH(1)q =
P
∑

j=1,k=1

R
∑

r=1

M−1
∑

n=0

s(tn)

〈

qj
∂un

ir

∂pj
,
∂un

ir

∂pk
qk

〉

.

Let ũn
i denote the solution obtained by solving the discretized elastic wave equation with

the forcing term
∑

j qj
∂F(tn)
∂pj

. It then holds that ũn
i =

∑

j qj
∂un

i

∂pj
, and hence,

qTH(1)q =
R
∑

r=1

M−1
∑

n=0

s(tn)
〈

ũn
ir , ũ

n
ir

〉

, (22)
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can be assembled during the time stepping calculation of ũn. The cost for calculating
qTHq therefore amounts to solving one additional elastic wave equation, which also is
needed when the step length is estimated by an approximate difference quotient, such
as in [7]. The advantage of using a step length based on (22) is that the errors in this
difference approximation are avoided.

4 Discretizing the singular source term

The gradient of the Dirac distribution in the seismic source term (4) can discretized based
on the discretization of a one-dimensional Dirac distributions δ(x−xs), and its derivative
δ′(x− xs). For all smooth, compactly supported functions of one variable ϕ(x), we have

∫

ϕ(x)δ(x− xs) dx = ϕ(xs)

∫

ϕ(x)
dδ

dx
(x− xs) dx = −

dϕ

dx
(xs). (23)

Our approach is based on the technique in [13], which approximates the singular sources
numerically by grid functions that satisfy (23) in a discrete scalar product for all poly-
nomial functions up to order q > 0, leading to q + 1 moment conditions. The required
order is related to the order of accuracy in the approximation of the differential equation.
Because we use gradient based optimization to solve for the source location, the source
term discretization must be twice continuously differentiable with respect to xs. As a
result, the moment conditions must be augmented by additional continuity conditions.

For a fourth order accurate scheme, the moment conditions for δ should be satisfied for
the functions ϕ(x) = xk, k = 0, . . . , 3, and the moment conditions for δ′ should be satisfied
for k = 0, . . . , 4. Details are given in [13]. To make the technique easier to implement, we
use discretizations that satisfy the moment conditions for k = 0, . . . , 4, both for δ and δ′.

We describe the discretization of δ and its derivative in one space dimension. The
multi-dimensional approximation can be obtained in a straightforward way by Cartesian
products of the one-dimensional discretizations. Let the one-dimensional grid be xj = jh,

j = 0, . . . , N + 1, and define the scalar product by (u, v)h1 = h
∑N

j=1 ujvj . Furthermore,

let the grid function b̃j = b̃(xs, js)j denote a preliminary approximation of δ(x−xs), which
is centered at grid point js. We make the straightforward choice b̃j = 0 for j < js − 2 or
j > js + 2, and determine the five coefficients in b̃j , js − 2 ≤ j ≤ js + 2, by solving the
system formed by the five moment conditions

(

xk, b̃
)

h1
= (xs)

k, k = 0, . . . , 4. (24)

The moment conditions on b̃ do not impose any specific relation between js and xs. How-
ever, for accuracy reasons, we want to center the stencil near xs. For example, we may
choose js such that xjs−h/2 ≤ xs < xjs+h/2. Within this interval, b̃ is infinitely differen-
tiable with respect to xs, because the elements b̃j are either zero, or depend on xs through
the right hand side of (24), which is a polynomial in xs. However, if xs = xjs + h/2 + ε,
the stencil will be centered around grid point xjs for ε < 0, but around grid point xjs+1

for ε ≥ 0. Unfortunately, the elements of b̃ are not continuously differentiable with respect
to xs at ε = 0, where the stencil switches center point.
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The lack of continuity with respect to xs has been observed to hamper the convergence
of the non-linear conjugated gradient algorithm. We will therefore replace b̃(xs, js) by a
smoother source discretization, denoted by b(xs, js). The properties of b(xs, js) are given
in the following theorem.

Theorem 2. Let js be defined by xjs ≤ xs < xjs+1, set ν = (xs − xjs)/h, and let ψ(ν) be
an m times continuously differentiable function having the properties

ψ(0) = 0, ψ(1) = 1,
dlψ

dνl
(0) =

dlψ

dνl
(1) = 0, l = 1, . . . ,m. (25)

Furthermore, assume that b̃(xs, js) satisfies (24). Then, the grid function

b(xs, js) = (1− ψ(ν)) b̃(xs, js) + ψ(ν)b̃(xs, js + 1), (26)

is m times continuously differentiable with respect to xs, and satisfies the moment condi-
tions (24).

Proof. Because d/dν = hd/dxs, differentiability with respect to ν is equivalent with dif-
ferentiability with respect to xs. Also, xjs ≤ xs < xjs+1 implies 0 ≤ ν < 1. As noted
above, the elements of b̃(xs, js) and b̃(xs, js + 1) are polynomials in xs, and are thus in-
finitely differentiable with respect to xs. Because ψ is m times continuously differentiable,
we conclude that b is m times continuously differentiable for 0 < ν < 1. At the stencil
switching point xs = xjs+1, the continuity conditions become

∂lb(xs, js)

∂xls
|xs→xjs+1

=
∂lb(xs, js + 1)

∂xls
|xs=xjs+1

, l = 0, . . . ,m. (27)

Leibniz’s product rule gives

∂lb(xs, js)

∂xls
= (1− ψ(ν))

∂lb̃(xs, js)

∂xls
+ ψ(ν)

∂lb̃(xs, js + 1)

∂xls

+
l

∑

q=1

(

l

q

)

1

hq
dqψ

dνq
(ν)

(

∂l−q b̃(xs, js + 1)

∂xl−q
s

−
∂l−q b̃(xs, js)

∂xl−q
s

)

. (28)

The properties of ψ in (25) give, for ν = 0,

∂lb(xs, js)

∂xls
|xs=xjs

=
∂lb̃(xs, js)

∂xls
|xs=xjs

, l = 0, 1, . . . ,m, (29)

and for ν → 1,

∂lb(xs, js)

∂xls
|xs→xjs+1

=
∂lb̃(xs, js + 1)

∂xls
|xs=xjs+1

, l = 0, 1, . . . ,m. (30)

Hence, by applying (29) to the source discretization centered at js + 1, we get

∂lb(xs, js + 1)

∂xls
|xs=xjs+1

=
∂lb̃(xs, js + 1)

∂xls
|xs=xjs+1

, l = 0, 1, . . . ,m. (31)
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The continuity conditions (27) now follow from (30) and (31).
The scalar product in the moment conditions (24) is computed by summation over the

elements of the grid function b. This summation is clearly independent of js and xs, so
that we have

(xk, b)h1 = (1− ψ(ν))
(

xk, b̃(xs, js)
)

h1
+ ψ(ν)

(

xk, b̃(xs, js + 1)
)

h1

= (1− ψ(ν))(xs)
k + ψ(ν)(xs)

k = (xs)
k,

for k = 0, . . . , 4. Therefore, b(xs, js) satisfies the moment condition (24).

We want to construct a source discretization with two continuous derivatives and apply
Theorem 2 to the case m = 2. We start from the blending function

ψ(ν) =











0, ν < 0,

10ν3 − 15ν4 + 6ν5, 0 ≤ ν < 1,

1, ν ≥ 1,

which is monotonically increasing for 0 < ν < 1 and has two continuous derivatives at the
break points ν = 0 and ν = 1. Since b̃(xs, js) is non-zero at five points, the grid function b
has six non-zero elements. After some algebra, we find that the coefficients in the stencil
(26) are given by

b(xs, js)js−2 =
1

h

(

1

12
ν −

1

24
ν2 −

1

12
ν3 −

19

24
ν4 + P (ν)

)

, (32)

b(xs, js)js−1 =
1

h

(

−
2

3
ν +

2

3
ν2 +

1

6
ν3 + 4ν4 − 5P (ν)

)

, (33)

b(xs, js)js =
1

h

(

1−
5

4
ν2 −

97

12
ν4 + 10P (ν)

)

, (34)

b(xs, js)js+1 =
1

h

(

2

3
ν +

2

3
ν2 −

1

6
ν3 +

49

6
ν4 − 10P (ν)

)

, (35)

b(xs, js)js+2 =
1

h

(

−
1

12
ν −

1

24
ν2 +

1

12
ν3 −

33

8
ν4 + 5P (ν)

)

, (36)

b(xs, js)js+3 =
1

h

(

5

6
ν4 − P (ν)

)

, (37)

where

P (ν) =
5

3
ν5 −

7

24
ν6 −

17

12
ν7 +

9

8
ν8 −

1

4
ν9,

and b(xs, js)j = 0 for all other j.
Let e(xs, js)j denote the grid function approximating the derivative of the Dirac dis-

tribution, δ′(x − xs). Following the same approach as above, we arrive at the six point
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stencil

e(xs, js)js−2 =
1

h2

(

−
1

12
+

1

12
ν +

1

4
ν2 +

2

3
ν3 +R(ν)

)

, (38)

e(xs, js)js−1 =
1

h2

(

2

3
−

4

3
ν −

1

2
ν2 −

7

2
ν3 − 5R(ν)

)

, (39)

e(xs, js)js =
1

h2

(

5

2
ν +

22

3
ν3 + 10R(ν)

)

, (40)

e(xs, js)js+1 =
1

h2

(

−
2

3
−

4

3
ν +

1

2
ν2 −

23

3
ν3 − 10R(ν)

)

, (41)

e(xs, js)js+2 =
1

h2

(

1

12
+

1

12
ν −

1

4
ν2 + 4ν3 + 5R(ν)

)

, (42)

e(xs, js)js+3 =
1

h2

(

−
5

6
ν3 −R(ν)

)

. (43)

Here, the definition of ν and the relation between js and xs are the same as for the grid
function b(xs, js) above. The polynomial R is given by

R(ν) = −
25

12
ν4 −

3

4
ν5 +

59

12
ν6 − 4ν7 + ν8,

and e(xs, js)j = 0 for j < js − 2 or j > js + 3.
It can be verified that the grid function e satisfies the moment conditions for a fourth

order accurate discretization of δ′(x− xs),

(1, e)h1 = 0 (xk, e)h1 = −k(xs)
k−1 k = 1, . . . , 4,

and is twice continuously differentiable with respect to the source location xs.

5 Estimating initial source parameters

Figure 1 shows contour levels of X in two planes of the 11-dimensional parameter space,
where the remaining nine parameters are held at their minimizing values. This example is
taken from the layer over half space problem called LOH.1, see Section 6 for details. The
minimum is clearly visible at xs = ys = 15000 and zs = 2000. Gradient based minimization
algorithms assume that the objective function is close to quadratic in parameter space.
Figure 1 shows that this assumption only holds close to the minimum. Furthermore, the
local minima in these cross-sections of parameter space indicate that X may have several
local minima. To make the minimization algorithm converge to the global minimum, it
follows that the initial parameter guess must be fairly accurate. We proceed by describing
an approach for establishing initial parameter values for the source estimation problem.

5.1 Initial estimate for the source location and start time

Our initial estimate for the source location is based on first arrival times. Assume that the
first wave arrives at time tr at receiver location (xr, yr, zr). If the material has homoge-
neous properties with compressional wave velocity cp, the travel time from source location

15
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Figure 1: Contour plots of X as function of the source location for the LOH.1 problem.
Top: X (xs, zs) for ys = 15000. Bottom: X (xs, ys) for zs = 2000. All other parameters are
held at their correct values.
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(xs, ys, zs) to receiver ’r’ satisfies

T̂r(xs, ys, zs) =
1

cp

√

(xr − xs)2 + (yr − ys)2 + (zr − zs)2.

The source starting time, ts, is related to the first arrival time, tr, through T̂r(xs, ys, zs)+
ts = tr. Hence, we consider solving

Ir(xs, ys, zs, ts) := T̂r(xs, ys, zs) + ts − tr = 0, r = 1, . . . , R. (44)

Each receiver results in one equation for the four unknowns (xs, ys, zs, ts), so we need
at least four receivers. Usually we have more than four receivers, which makes (44) an
overdetermined system. It can be solved in the least squares sense using the Gauss-Newton
method.

The first arrival time at receiver r is defined as the smallest value of tm for which

|umir | > ηmax
n

|unir | or |vmir | > ηmax
n

|vnir |or |wm
ir | > ηmax

n
|wn

ir |, 0 < η * 1, (45)

i.e., the earliest time for which the amplitude of any component of the signal reaches a
fraction of its peak value. In the numerical experiments below we use η = 10−6.

If the material is not homogeneous, the above procedure can still be applied if cp is
replaced by an appropriate average of the compressional wave speed. However, we have
found that such an approach can be sensitive to the value of cp. In some cases it even
makes the Gauss-Newton iteration diverge. For heterogeneous materials, a better approach
is to estimate the initial source position by ray tracing, which takes the variable material
properties into account. We here describe the approach for a layered material model.
Consider a material with piecewise constant compressional wave speed in m horizontal
layers, depending only on the depth below the free surface,

cp(z) =























c1, 0 ≤ z < Z1,

c2, Z1 ≤ z < Z2,

· · ·
cm, Zm−1 ≤ z ≤ Zm = zmax.

Assume that the source is located at (xs, ys, zs) with Zn−1 < zs < Zn, and that the
receiver is located at (xr, yr, zr) with 0 ≤ zr < Z1. The case n = 1 correspond to a
homogeneous material, and we assume n ≥ 2. The piecewise linear path between source
and receiver with break points at (Xi, Yi, Zi), i = 1, . . . , n− 1 has the travel time

Tr =
n
∑

i=1

ξi
ci
, ξi =











√

(Xi − xr)2 + (Yi − yr)2 + (Zi − zr)2, i = 1,
√

(Xi −Xi−1)2 + (Yi − Yi−1)2 + (Zi − Zi−1)2, 2 ≤ i ≤ n− 1,
√

(xs −Xi−1)2 + (ys − Yi−1)2 + (zs − Zi−1)2, i = n.

The travel time is a function of the locations of the break points (Xi, Yi, Zi), i = 1, . . . , n−1.
Since Zi are assumed to be fixed, the ray from source to receiver is determined by the
values of (Xi, Yi) that minimize Tr.

17



At the minimum, ∂Tr/∂Xi = 0 and ∂Tr/∂Yi = 0, for i = 1, 2, . . . , n − 1. This results
in the system

A(x,y)x = r(1), A(x,y)y = r(2), (46)

where x = (X1, . . . , Xn−1)T , y = (Y1, . . . , Yn−1)T . Note that equation (46) is non-linear
because the tridiagonal matrix A depends on x and y. We have found that (46) can be
solved by the fix point iteration

A(x(k),y(k))x(k+1) = r(1), A(x(k),y(k))y(k+1) = r(2), k = 0, 1, . . . .

This iteration usually converges quickly, at least for cases where the number of layers is
moderate.

By solving the above minimization problem, we can calculate the minimum travel time
from the source to receiver ’r’, which we denote by T̂r. Clearly, it is a function of the source
location, and similar to the case with a homogeneous material, we have T̂r = T̂r(xs, ys, zs).

As before, we can estimate the source location by solving (44) for the unknowns
(xs, ys, zs, ts). We assume the more than four receivers are available (R > 4), which makes
(44) an overdetermined system. The Jacobian of (44) is needed by the Gauss-Newton
method. Here we approximate the derivative of Ir with respect to the source location by
numerical differentiation, i.e.,

∂Ir
∂xs

≈
T̂r(xs + h̃, ys, zs)− T̂r(xs, ys, zs)

h̃
,

for a small fixed number h̃. The ys- and zs-derivatives are computed similarly. Thus when
solving (44) by the Gauss-Newton method, (46) must be solved four times per iteration.

5.2 Estimating the source frequency

It has turned out to be difficult to automatically estimate the source frequency, ω0. For
this reason, we require an initial guess for ω0 to be provided by the user. However, in
practice this might not be a serious problem, because in realistic applications the observed
ground motions must be filtered in time to remove waves that can not be resolved on the
computational grid. This is a preprocessing step that is performed before the optimiza-
tion is started. The corner frequency of the filter is then related to the effective source
frequency.

5.3 Initial estimate for the moment tensor

Once initial estimates for the source location, frequency, and starting time have been
established, we can use the linearity of the elastic wave equation to estimate the matrix
M in the source term (4). Let u(xx), u(xy), u(xz), u(yy), u(yz), and u(zz) denote solutions
of the elastic wave equation with the matrix M set to
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0 0 0

0 0 0
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0 0 0
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respectively. The solution for a general M is then obtained as the linear combination

w(mxx,mxy,mxz,myy,myz,mzz) :=

mxxu
(xx) +mxyu

(xy) +mxzu
(xz) +myyu

(yy) +myzu
(yz) +mzzu

(zz).

The elements of M are determined by minimizing the wave form misfit

X =
1

2

R
∑

r=1

M−1
∑

n=0

s(tn)
∣

∣wn
ir(mxx,mxy,mxz,myy,myz,mzz)− dn

ir

∣

∣

2
. (47)

Becausew is linear inmij , X is a quadratic function ofmij . Its minimum can be computed
directly by solving the 6× 6 linear system ∂X/∂mij = 0.

6 Numerical experiments

To verify our implementation and gain understanding of the performance of the suggested
approach, it is convenient to conduct numerical experiments on synthetic data. To generate
the synthetic data, we first solve the discretized elastic wave equation with given source
parameters, and use the resulting motions at the receiver stations as ’measured’ data. In
this way, the exact solution is known, and we can easily evaluate the convergence properties
of the minimization algorithm.

A standard test problem for elastic wave modeling is the layer over half space problem
called LOH.1, see [1]. In this test, a point moment tensor forcing with a Gaussian time
function is applied in a layered isotropic elastic material. The Gaussian time function,

g(t; t0,ω0) =
ω0√
2π

e−ω2
0(t−t0)2/2,

is parametrized by the frequency ω0 and the center time t0. The material velocities are
cp = 4000 and cs = 2000 in a top layer extending over 0 ≤ z ≤ 1000, with cp = 6000 and
cs = 3464 in the half-space z > 1000. The densities are ρ = 2600 in the top layer and
ρ = 2700 in the half-space. The computational domain in the standard LOH.1 problem
is a box of size 30000× 30000× 17000. In order to make the computations run faster, we
reduce the depth of the computational domain from 17000 to 8500, but keep the thickness
of the top layer unchanged. All computations use the grid spacing h = 120 and the elastic
wave equation is integrated to time T = 9. The spatial grid has 4.5 million points.

In the following numerical experiments, the synthetic data was generated with the
source parameter vector p∗, with components x∗s = y∗s = 15000, z∗s = 2000, m∗

xy = 1018,
m∗

xx = m∗

xz = m∗

yy = m∗

yz = m∗

zz = 0, t∗0 = 1.45, and ω∗

0 = 6.0. Note that we have reduced
the value of the frequency parameter ω0 to allow for a coarser grid spacing than what
normally is used when solving the LOH.1 problem.

The solution is recorded at 25 receiver stations placed on a coarse 5×5 grid, at

(xr, yr, zr) = (9000 + 3000(j − 1), 9000 + 3000(k − 1), 0), r = j + 5(k − 1),
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for 1 ≤ j ≤ 5, and 1 ≤ k ≤ 5.
The center time t0 in the Gaussian time function follows from the source start time ts

as t0 = ts + tδ, where the half-duration tδ satisfies

η =
ω0√
2π

e−(ω0tδ)2/2 ⇒ tδ =
1

ω0

√

−2 log((η
√
2π)/ω0).

Here, 0 < η * 1 is the same constant that is used in (45) for estimating the first arrival
time.

The automated initial guess described in Section 5, with the user choice ω0 = 6.3,
resulted in the estimated source position xs = 14980.8, ys = 15039.5, zs = 2352.73, with
moment tensor components mxx = 3.754×1014, mxy = 9.622×1017, mxz = −8.937×1015,
myy = 3.758×1014, myz = 4.351×1015, mzz = −5.313×1012, and t0 = 1.358. The estimate
for the location and start time was obtained with the ray tracing algorithm applied to the
above layer over half-space material model. It is a sufficiently good approximation to make
the Fletcher-Reeves algorithm converge to the global minimum.

In our implementation of the source inversion algorithm, the user is given the choice
to enter an initial parameter guess, or have the solver estimate it automatically. The com-
putational cost of the automatic estimate is somewhat high because the moment tensor
components are calculated by solving six elastic wave equations, see Section 5.3. Hence,
computational time can be saved if a fairly accurate approximation of the source parame-
ters is known in some other way. In some of the numerical experiments below, we use the
following initial parameter values:

xs = 16000, ys = 14000, zs = 2200, mxy = 1.2 · 1018,
mxx = mxz = myy = myz = mzz = 0, t0 = 1.54, ω0 = 6.3.

(48)

As long as the initial parameter guess is reasonably close to the global minimum, our
practical experience is that the number of iterations required to reach convergence is not
sensitive to this choice.

6.1 Choosing the preconditioner

The sizes of the parameters in the source estimation problem span many orders of magni-
tude. In SI-units, xs is of the order O(104), the moment tensor components mxx, mxy, . . .
are of the order O(1015)−O(1018). The parameters t0 and ω0 are both between O(1) and
O(10). Because there is such a large difference in size between the smallest and largest pa-
rameter values, the original minimization problem is very poorly scaled and the condition
number of the Hessian is a very large.

For optimal convergence of the Fletcher-Reeves algorithm, the parameters should be
scaled such that the Hessian at the solution, H∗ := H(p∗), has condition number one.
The change of parameters p̂ = Sp gives the scaled Hessian Ĥs = (S−1)THsS−1, i.e., the
scaling corresponding to Ĥs = I satisfies

STS = H∗. (49)
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Hence, S could be computed by a Cholesky factorization of H∗. However, H∗ is in general
not computable because it requires the solution of the minimization problem to be known.
Instead we can use a Cholesky factorization of the Hessian at the initial parameter guess.
Since this scaling is not optimal and the implementation of the scaled algorithm is more
straight forward when S is diagonal, we restrict us to this case. As we shall see, a significant
reduction of the condition number of the Hessian can still be achieved. When S is diagonal,
(49) can not be satisfied exactly. Instead we minimize the residual, ||H∗ − S2||F , which
gives Sjj =

√

Hjj , j = 1, . . . , P , i.e., the scaling matrix should equal the square root
of the diagonal of the Hessian. The Hessian at the minimum is positive definite, which
implies that the diagonal elements of H∗ are positive. Since H∗ is not known until the
minimization problem has been solved, we define S as the square root of the diagonal of
the Hessian evaluated at the initial guess. One difficulty with this definition is that there is
no guarantee that the Hessian is positive definite at the initial guess. If there are negative
diagonal elements in the Hessian, we instead use the square root of the diagonal elements
of the matrix H1, see (19), evaluated at the initial guess. It is obvious from (19) that H1

always has non-negative diagonal elements. This approach has turned out to work well in
practice.

The computation of the Hessian, which is described in Section 3.1, requires the elastic
wave equation to be solved 11 times. However, this computation only needs to be done
once, before the Fletcher-Reeves iteration starts.

6.2 Condition number of the scaled Hessian

Table 1 shows the influence of different scaling matrices for the LOH.1 source inversion
problem. The bottom row shows the condition number of the Hessian at the exact min-
imum, scaled by the given S. Here, the condition number was computed by the Matlab
function cond. The diagonal variable transformation p̂ = Sp implies that the inverse of
the diagonal elements of the scaling matrix correspond to reference sizes of the parameters.
However, only their relative sizes matter because multiplying S by a constant factor does
not change the condition number of the scaled Hessian.

The unscaled Hessian has condition number cond(H∗) = 4.73·1038. The second column
of Table 1 shows the scaling obtained as the square root of the diagonal elements of the
Hessian, evaluated at the initial parameter guess (48). Not all diagonal elements of the
Hessian are positive at this point in parameter space. For this reason, only the first part
of the Hessian, H1, as described in Section 6.1 was used in this scaling. It is interesting
to note that the scaling obtained from the square root of the diagonal of the Hessian at
the minimum, shown in column three, leads to a slightly larger condition number. As
was mentioned above, the Hessian at the minimum is in general not computable because
this scaling assumes that the solution of the minimization problem is known. The fourth
column, labeled ref. sizes 1, shows the scaling based on estimated sizes of the parameters.
These numbers are based on the size of the domain, which is in the 10’s of kilometers,
and the fact that we know that t0 is of order O(1), ω0 = O(10), and the moment tensor
components are of the order O(1018). Table 1 shows that the scalings based on the
Hessian give significantly smaller condition numbers compared with the unscaled case and

21



Hes., guess Hes., exact Ref. sizes 1 Ref. sizes 2 Ref. sizes 3

1/s1,1 (xs) 10.8 11.6 1.00 · 104 1.00 · 103 5.00 · 103

1/s2,2 (ys) 10.8 11.6 1.00 · 104 1.00 · 103 5.00 · 103

1/s3,3 (zs) 12.2 20.6 1.00 · 104 1.00 · 103 5.00 · 103

1/s4,4 (mxx) 2.68 · 1016 2.70 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s5,5 (mxy) 1.68 · 1016 1.65 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s6,6 (mxz) 1.39 · 1016 1.29 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s7,7 (myy) 2.67 · 1016 2.70 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s8,8 (myz) 1.39 · 1016 1.29 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s9,9 (mzz) 2.28 · 1016 1.85 · 1016 1.00 · 1018 1.00 · 1018 1.00 · 1018

1/s10,10 (t0) 2.13 · 10−3 2.55 · 10−3 1.00 0.10 0.50

1/s11,11 (ω0) 5.65 · 10−2 6.24 · 10−2 10.0 1.00 5.00

cond(S−1H∗S−1) 28.1 31.8 6.18 · 103 80.4 1.55 · 103

Table 1: Scaling factors and their influence on the condition number of the scaled Hessian.
The condition number of the unscaled Hessian is 2.77 · 1038

ref. sizes 1. After inspecting the Hessian based scalings, we modified the reference size
scaling to be 103 for the length scale, 1018 for the moment scale, 0.1 for the time scale,
and 1 for the frequency scale. This scaling, given as ref. sizes 2 in Table 1, gave the much
improved condition number 80.4. The last column of Table 1 shows a scaling that is in
between ref. sizes 1 and ref. sizes 2, labeled ref. sizes 3. It lead to a condition number
close to that of ref. sizes 1, indicating how sensitive the condition number is to the scaling
matrix. Hence, even though it is possible to design a favorable parameter scaling by order
of magnitude arguments, it is very difficult to find the optimal values. We conclude that
using the Hessian for scaling the parameters is a much more reliable way to achieve a small
condition number.

6.3 Convergence rates

Figure 2 shows convergence properties of the Fletcher-Reeves algorithm for different scaling
matrices. These computations were run for up to a maximum of 10 restarts (m = 10
in Algorithm 3), with each restart cycle consisting of P = 11 inner iterations. The
iteration is terminated when the maximum norm of the scaled gradient of the misfit
becomes smaller than 10−12, or when the maximum number of iterations is reached. The
magenta curve shows the convergence history when S is taken as the square root of the
diagonal elements of H∗. Using the square root of the diagonal elements of the Hessian
at the initial guess, shown by the red curve in Figure 2, makes the iteration converge in
almost the same number of iterations. The results plotted in cyan and blue colors were
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Figure 2: Convergence of the misfit (left) and the maximum norm of the scaled gradient
(right) for the different scalings given in Table 1.

obtained with scalings corresponding to the cases “ref. sizes 1” and “ref. sizes 2” in Table 1.
The improvement in convergence rate when switching from “ref. sizes 1” to “ref. sizes 2” is
remarkable, and prompted us to try the intermediate scaling labeled “ref. sizes 3”, shown
in green color.

The Hessian based scalings always perform well, and the solution is obtained in 40-
50 iterations. The reference size scalings can be made almost as efficient, but are very
sensitive to the exact values in the scaling matrix. The convergence rate of the unscaled
method, shown in black, is very slow and should not be used in practical computations.
Figure 3 displays the evolution of the source parameters during the iterations, when the
scaling is computed from the Hessian at the initial guess. The left figure shows the source
position xs, ys, zs vs. the number of iterations. Here, ys is offset by 1000 to distinguish it
from xs and zs is offset by 10000 to make it fit into the same plot. The circles to the right
of the curves indicate the exact value of the parameter. Similarly, the middle subplot of
Figure 3 show the evolution of the six components of the matrix M, and the right subplot
shows the time shift and the frequency with an offset. It is clear that already after about
33 iterations (2 restarts with the Fletcher-Reeves algorithm), all parameter values have
converged in “picture” norm.

Figure 4 gives another illustration of the convergence process. The ground motions
at the receiver stations, (x, y, z) = (9000, 21000, 0) and (x, y, z) = (9000, 12000, 0) are dis-
played as functions of time. The red curves were computed by solving the elastic wave
equation with the initial source parameter values (48). The curves plotted in black are the
motions due to solving the elastic wave equation with source parameter values p∗, corre-
sponding to the solution of the minimization problem. Since this example uses synthetic
data, the solution of the minimization problem results in motions that are identical to the
observations, modulus roundoff errors.
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Figure 3: Convergence of source parameters. Location (left), moment tensor components
(middle), and time shift and frequency (right).

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2

0 1 2 3 4 5 6 7 8 9

-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5

0 1 2 3 4 5 6 7 8 9

-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

0 1 2 3 4 5 6 7 8 9

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 1 2 3 4 5 6 7 8 9

-1.5
-1

-0.5
0

0.5
1

1.5

0 1 2 3 4 5 6 7 8 9

-0.2
-0.1

0
0.1
0.2
0.3

0 1 2 3 4 5 6 7 8 9

Figure 4: The (u, v, w) components of the motions vs. time, at the receivers (x, y, z) =
(9000, 21000, 0) (left) and (x, y, z) = (9000, 12000, 0) (right). Curves in red were generated
with the initial source parameter values (48) and curves in black correspond to p∗, i.e.,
the solution of the minimization problem.
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6.4 Computational cost

In each iteration of Fletcher-Reeves algorithm, the computation of the misfit and its
gradient can be obtained by solving one elastic and one adjoint wave equation. The
computation of the step length (14) adds one more elastic wave equation to be solved, and
the test for acceptance of the initial step length in the line search algorithm requires the
solution of yet another elastic wave equation. Hence, each iteration requires a minimum
of three elastic wave equations and one adjoint wave equation to be solved. This count
holds if the line search algorithm accepts the initial step length, which usually is the case.
When the line search algorithm needs to perform step length reduction (backtracking),
each reduction incurs one additional solve of an elastic wave equation.

Figure 3 shows that a highly accurate solution can be obtained after about 40 iterations.
Since the adjoint wave equation needs the same amount of computational work as solving
the elastic wave equation, this corresponds to approximately 160 solutions of the elastic
wave equation. The total computation times for the 60 iterations shown in Figure 3 was
about 15 minutes using 256 cores of a Linux cluster of Intel Xenon processors.

7 Conclusions

We have presented an algorithm for estimating the seismic source parameters from recorded
time dependent motions at a number of receiver stations. The solution of this inverse
problem is obtained by minimizing the full waveform misfit using a non-linear conjugate
gradient method. The key features of the proposed technique are an adjoint discretiza-
tion of the fourth order accurate method in [16], a source discretization that leads to a
twice continuously differentiable misfit function, and a parameter scaling that makes the
minimization problem well conditioned. Numerical experiments with the LOH.1 problem
indicate good convergence properties of the proposed algorithm.

Several practical problems must be solved before we can apply our approach to es-
timate source parameters in realistic seismic events. Seismographic recordings must be
deconvolved and band-pass filtered to compensate for instrument response characteristics.
Furthermore, additional filtering of the recordings is often needed to remove frequencies
that can not be resolved on the computational grid. We are currently working on incor-
porating the filters into the source estimation problem. Because the material properties
do not depend on time, the elastic wave equation describes a linear time-invariant system.
Filtering the solution is therefore equivalent to using a filtered source time function. The
resulting minimization problem will therefore depend on only 10 parameters, since the
frequency parameter is fixed by the filter.

Another interesting extension of the current approach is the inverse problem for esti-
mating the material wave speeds and density. One additional difficulty with this problem
is to find a suitable parametrization of the material. To limit the dimensionality of param-
eter space, we expect that some degree of smoothness must be imposed on the material
model, perhaps by using piecewise smooth basis functions to represent the material prop-
erties. Preliminary computations in two space dimensions with a very simple material
parametrization are showing encouraging results.
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A Proof of Theorem 1

We start by expanding the predictor into the corrector in Algorithm 1. Then rewrite the
resulting expression as

ρ
un+1 − 2un + un−1

∆2
t

= Lh(u
n) + F(tn) +

∆2
t

12

(

Lh(v
n) + Ftt(tn)

)

+ SG(u
n − un−1). (50)

Next, take the scalar product between (50) and κn, and sum over all time steps,
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un+1 − 2un + un−1
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t
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n=0
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12
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h
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M−1
∑
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(

κn,SG(u
n − un−1)

)

h
. (51)

The sum on the left hand side of (51) can be rewritten as

M−1
∑

n=0

(

κn, ρ
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∆2
t

)

h

=
M−1
∑

n=0

(
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)
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+
1
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(
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)

, (52)

where the initial data u0 = u−1 = κM = κM−1 = 0 make
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The first sum on the right hand side of (51) is treated by the self-adjoint property,
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The second last sum of (51) can be rewritten
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The supergrid damping term can be written

M−1
∑

n=0

(κn,SG(u
n − un−1))h =
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n))h

−
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(κn+1,SG(u
n))h − (κ0,SG(u

−1))h + (κM ,SG(u
M−1))h. (54)

The boundary terms are zero because of the initial data u−1 = κM = 0, and we use the
symmetry (9) to obtain
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Collecting terms gives that (51) is equivalent to
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Expanding the predictor (11) into the corrector (12) gives

ρ
κn+1 − 2κn + κn−1

∆2
t

= Lh(κ
n) +G(tn) +

∆2
t

12
Lh(ζ

n)− SG(κ
n+1 − κn). (56)

Identity (13) of Theorem 1 is obtained by inserting (56) into the left hand side of (55).
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[14] N. A. Petersson and B. Sjögreen. A fourth order supergrid damping layer for the
elastic wave equation. Technical report, Lawrence Livermore National Laboratory,
2012. To be submitted.

[15] R. E. Plessix and W. A. Mulder. Resistivity imaging with controlled-source electro-
magnetic data: depth and data weighting. Inverse Problems, 24:034012, 2008.
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